The effects of alginate encapsulation on NIT-1 insulinoma cells: viability, growth and insulin secretion.
نویسندگان
چکیده
Transplantation of microencapsulated insulin-secreting cells is proposed as a promising therapy for the treatment of type I diabetes mellitus. In recent years, important advances have been made in the field of immunoisolation and many studies have shown that alginate provides some major advantages for encapsulation over other systems. Since it is known that the extracellular matrix influences the behaviour of encapsulated cells, the aim of the present work has been to study the consequences of encapsulation on some cell functions. For this purpose, cell growth and dynamics of insulin release of NIT-1 cells entrapped in alginate capsules compared with those exhibited by free NIT-1 cells were investigated by means of growth curves, assays, Trypan blue staining and ELISA test. All investigations performed allowed us to conclude that alginate-entrapped NIT-1 cells maintain their growth features and secretory functions although with some important differences. In particular, alginate encapsulation affects the cellular growth profile and causes the lost of time dependence of insulin secretion profile.
منابع مشابه
Normal Insulin Secretion from Immune-Protected Islets of Langerhans by PEGylation and Encapsulation in the Alginate-Chitosan-PEG
Background: Pancreatic islet transplantation is one of the most promising strategies for treating patients with type I diabetes mellitus.Objective: We aimed to assess the immunoisolation properties of the multilayer encapsulated islets using alginate-chitosan-PEG for immunoprotection and insulin secretion from the encapsulated islets induced under differe...
متن کاملBiocompatible Coating of Encapsulated Cells Using Ionotropic Gelation
The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts' immune system and the total transplant volume need...
متن کاملImproving the Growth Rate of Human Adipose-Derived Mesenchymal Stem Cells in Alginate/Gelatin Versus Alginate Hydrogels
Background: Expansion and differentiation of stem cells relies on the soluble materials as well as the physical conditions of their microenvironment. Several methods have been studied in attempt to enhance the growth and differentiation rates of different adult stem cells extracted from different sources. Objectives: The purpose was to improve the three-dimensional (3D) culture condition of th...
متن کاملBiochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.
In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between m...
متن کاملPolysaccharide multilayer nanoencapsulation of insulin-producing beta-cells grown as pseudoislets for potential cellular delivery of insulin.
This paper describes the use of a layer-by-layer nanocoating technique for the encapsulation of insulin-producing pancreatic beta-cell spheroids (pseudoislets) within chitosan/alginate multilayers. We used pseudoislets self-organized from a population of the insulinoma cell line MIN6, derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta-cells, as an experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- In vivo
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2009